Understanding the Quantum Computational Speed-up via De-quantisation

نویسندگان

  • Alastair A. Abbott
  • Cristian S. Calude
چکیده

While it seems possible that quantum computers may allow for algorithms offering a computational speed-up over classical algorithms for some problems, the issue is poorly understood. We explore this computational speed-up by investigating the ability to de-quantise quantum algorithms into classical simulations of the algorithms which are as efficient in both time and space as the original quantum algorithms. The process of de-quantisation helps formulate conditions to determine if a quantum algorithm provides a real speed-up over classical algorithms. These conditions can be used to develop new quantum algorithms more effectively (by avoiding features that could allow the algorithm to be efficiently classically simulated), as well as providing the potential to create new classical algorithms (by using features which have proved valuable for quantum algorithms). Results on many different methods of de-quantisations are presented, as well as a general formal definition of de-quantisation. De-quantisations employing higher-dimensional classical bits, as well as those using matrix-simulations, put emphasis on entanglement in quantum algorithms; a key result is that any algorithm in which the entanglement is bounded is de-quantisable. These methods are contrasted with the stabiliser formalism de-quantisations due to the Gottesman-Knill Theorem, as well as those which take advantage of the topology of the circuit for a quantum algorithm. The benefits of the different methods are contrasted, and the importance of a range of techniques is emphasised. We further discuss some features of quantum algorithms which current dequantisation methods do not cover.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum RAM Based Neural Netoworks

A mathematical quantisation of a Random Access Memory (RAM) is proposed starting from its matrix representation. This quantum RAM (q-RAM) is employed as the neural unit of q-RAM-based Neural Networks, q-RbNN, which can be seen as the quantisation of the corresponding RAM-based ones. The models proposed here are direct realisable in quantum circuits, have a natural adaptation of the classical le...

متن کامل

An Observer-Based de-Quantisation of Deutsch's Algorithm

Deutsch’s problem is the simplest and most frequently examined example of computational problem used to demonstrate the superiority of quantum computing over classical computing. Deutsch’s quantum algorithm has been claimed to be faster than any classical ones solving the same problem, only to be discovered later that this was not the case. Various de-quantised solutions for Deutsch’s quantum a...

متن کامل

De-quantisation in Quantum Computation

Quantum computation has shown much promise at providing, at least in some cases, a significant advantage over classical computation. However, the nature of quantum computation is still far from being well understood. In order to develop quantum algorithms effectively, it is important to understand the true nature of the differences between classical and quantum computation. We investigate these...

متن کامل

Numerical Solution of the Lane-Emden Equation Based on DE Transformation via Sinc Collocation Method

In this paper‎, ‎numerical solution of‎ ‎general Lane-Emden equation via collocation method based on‎ ‎Double Exponential DE transformation is considered‎. ‎The‎ ‎method converts equation to the nonlinear Volterra integral‎ ‎equation‎. ‎Numerical examples show the accuracy of the method.‎ ‎Also‎, ‎some remarks with respect to run-time‎, computational cost‎ ‎and implementation are discussed.

متن کامل

Spectral norm and quantum speed-up

In theoretical quantum computer science, understanding where and how computational speed-ups occur while applying quantum properties is a primary goal. In this paper, we study such problem under the framework of Quantum Query Model and prove the significance of L1-norm in the simulation of a given quantum algorithm. This result is presented by upper-bounds for the quotient between optimal class...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010